Evapotranspiration
Bigleaf.potential_ET
— Functionpotential_ET(::PriestleyTaylor, Tair, pressure, Rn; G=0.0, S=0.0, ...)
potential_ET(::PriestleyTaylor, Tair, pressure, Rn, G, S; ...)
potential_ET(::PenmanMonteith, Tair, pressure, Rn, VPD, Ga_h;
G=zero(Tair),S=zero(Tair), ...)
fpotential_ET(::PenmanMonteith, Tair, pressure, Rn, VPD, Ga_h, G, S; ...)
potential_ET!(df, approach; ...)
Potential evapotranspiration according to Priestley & Taylor 1972 or the Penman-Monteith equation with a prescribed surface conductance.
Arguments
Tair
: Air temperature (degC)pressure
: Atmospheric pressure (kPa)Rn
: Net radiation (W m-2)VPD
: Vapor pressure deficit (kPa)Ga
: Aerodynamic conductance to heat/water vapor (m s-1)df
: DataFrame with the above variablesapproach
: Approach used: EitherPriestleyTaylor()
orPenmanMonteith()
.
optional:
G=0.0
: Ground heat flux (W m-2). Defaults to zero.S=0.0
: Sum of all storage fluxes (W m-2) . Defaults to zero.constants=
BigleafConstants
()
: physical constants (cp, eps, Rd, Rgas)
for PriestleyTaylor
:
alpha = 1.26
: Priestley-Taylor coefficient
for PenmanMonteith:
Gs_pot = 0.6
: Potential/maximum surface conductance (mol m-2 s-1);Esat_formula
: formula used inEsat_from_Tair
Details
Potential evapotranspiration is calculated according to Priestley & Taylor, 1972 (approach = PriestleyTaylor()
:
$\mathit{LE}_{pot} = (\alpha \, \Delta \, (Rn - G - S)) / (\Delta + \gamma)$
$\alpha$ is the Priestley-Taylor coefficient, $\Delta$ is the slope of the saturation vapor pressure curve (kPa K-1), and $\gamma$ is the psychrometric constant (kPa K-1).
If approach = PenmanMonteith()
, potential evapotranspiration is calculated according to the Penman-Monteith equation:
$\mathit{LE}_{pot} = (\Delta \, (R_n - G - S) + \rho \, c_p \, \mathit{VPD} \; G_a) / (\Delta + \gamma \, (1 + G_a/G_{s pot})$
where $\Delta$ is the slope of the saturation vapor pressure curve (kPa K-1), $\rho$ is the air density (kg m-3), and $\gamma$ is the psychrometric constant (kPa K-1). The value of $G_{s pot}$ is typically a maximum value of $G_s$ observed at the site, e.g. the $90^{th}$ percentile of $G_s$ within the growing season.
Ground heat flux and storage heat flux G
or S
are provided as optional arguments. In the input-explicit variants, they default to zero. In the data-frame arguments, they default to missing, which results in assuming them to be zero which is displayed in a log-message. Note that in difference to the bigleaf R package, you explicitly need to care for missing values (see examples).
Value
NamedTuple with the following entries:
ET_pot
: Potential evapotranspiration (kg m-2 s-1)LE_pot
: Potential latent heat flux (W m-2)
References
- Priestley, CHB., Taylor, R_J., 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review 100, 81-92.
- Allen, RG., Pereira LS., Raes D., Smith M., 1998: Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56.
- Novick, K_A., et al. 2016: The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change 6, 1023 - 1027.
See also
Examples
Calculate potential ET of a surface that receives a net radiation of 500 Wm-2 using Priestley-Taylor:
Tair, pressure, Rn = 30.0,100.0,500.0
ET_pot, LE_pot = potential_ET(PriestleyTaylor(), Tair, pressure, Rn)
≈(ET_pot, 0.000204; rtol = 1e-2)
Calculate potential ET for a surface with known Gs (0.5 mol m-2 s-1) and Ga (0.1 m s-1) using Penman-Monteith:
Tair, pressure, Rn = 30.0,100.0,500.0
VPD, Ga_h, Gs_pot = 2.0, 0.1, 0.5
ET_pot, LE_pot = potential_ET(
PenmanMonteith(), Tair,pressure,Rn,VPD, Ga_h; Gs_pot)
# now cross-check with the inverted equation
Gs_ms, Gs_mol = surface_conductance(
InversePenmanMonteith(), Tair,pressure,VPD,LE_pot,Rn,Ga_h)
Gs_mol ≈ Gs_pot
DataFrame variant with explicitly replacing missings using coalesce.
:
using DataFrames
df = DataFrame(
Tair = 20.0:1.0:30.0,pressure = 100.0, Rn = 500.0, G = 105.0, VPD = 2.0,
Ga_h = 0.1)
allowmissing!(df, Cols(:G)); df.G[1] = missing
#
# need to provide G explicitly
df_ET = potential_ET!(copy(df), PriestleyTaylor(); G = df.G)
ismissing(df_ET.ET_pot[1])
#
# use coalesce to replace missing values by zero
df_ET = potential_ET!(
copy(df), PriestleyTaylor(); G = coalesce.(df.G, zero(df.G)))
!ismissing(df_ET.ET_pot[1])
Bigleaf.equilibrium_imposed_ET
— Functionequilibrium_imposed_ET(Tair,pressure,VPD,Gs, Rn; ...)
equilibrium_imposed_ET!(df; ...)
Evapotranspiration (ET) split up into imposed ET and equilibrium ET.
Arguments
Tair
: Air temperature (deg C)pressure
: Atmospheric pressure (kPa)VPD
: Air vapor pressure deficit (kPa)Gs
: surface conductance to water vapor (m s-1)Rn
: Net radiation (W m-2)
optional :
G=0
: Ground heat flux (W m-2)S=0
: Sum of all storage fluxes (W m-2)Esat_formula=Sonntag1990()
: formula used inEsat_from_Tair
constants=
BigleafConstants
()
: physical constants (cp, eps)
Details
Total evapotranspiration can be written in the form (Jarvis & McNaughton 6):
$ET = \Omega \mathit{ET}_{eq} + (1 - \Omega) \mathit{ET}_{imp}$
where $\Omega$ is the decoupling coefficient as calculated from decoupling
. ET_eq
is the equilibrium evapotranspiration i.e., the ET rate that would occur under uncoupled conditions, where the budget is dominated by radiation (when Ga -> 0):
$ET_{eq} = (\Delta \, (R_n - G - S) \, \lambda) / ( \Delta \gamma)$
where $\Delta$ is the slope of the saturation vapor pressur(kPa K-1), $\lambda$ is the latent heat of vaporization (J kg-1), and $\gamma$ is the psychrometric constant (kPa K-1). ET_imp
is the imposed evapotranspiration rate, the ET rate that would occur under fully coupled conditions (when Ga -> inf):
$ET_{imp} = (\rho \, c_p \, \mathit{VPD} ~ G_s \, \lambda) / \gamma$
where $\rho$ is the air density (kg m-3).
Value
A NamedTuple
or DataFrame
with the following columns:
ET_eq
: Equilibrium ET (kg m-2 s-1)ET_imp
: Imposed ET (kg m-2 s-1)LE_eq
: Equilibrium LE (W m-2)LE_imp
: Imposed LE (W m-2)
References
- Jarvis, PG., McNaughton, KG., 1986: Stomatal control of transpiration: scaling up from leaf to region. Advances in Ecological Rese1-49.
- Monteith, JL., Unsworth, MH., 2008: Principles of ironmPhysics. 3rd edition. Academic Press, London.
Examples
Tair,pressure,Rn, VPD, Gs = 20.0,100.0,50.0, 0.5, 0.01
ET_eq, ET_imp, LE_eq, LE_imp = equilibrium_imposed_ET(Tair,pressure,VPD,Gs, Rn)
≈(ET_eq, 1.399424e-05; rtol = 1e-5)