Surface conductance
Bigleaf.decoupling
— FunctionTODO; implement decoupling.
This stub is there to satisfy links im Help-pages.
Bigleaf.surface_conductance
— Function surface_conductance(::FluxGradient, Tair,pressure,VPD,LE; constants)
surface_conductance(::InversePenmanMonteith, Tair,pressure,VPD,LE,Rn,Ga_h;
G = 0.0, S = 0.0, Esat_formula=Sonntag1990(), constants)
surface_conductance!(df, method::FluxGradient; kwargs...)
surface_conductance!(df, method::InversePenmanMonteith; G = 0.0, S = 0.0, kwargs...)
Calculate surface conductance to water vapor from the inverted Penman-Monteith equation or from a simple flux-gradient approach.
Arguments
Tair
: Air temperature (deg C)pressure
: Atmospheric pressure (kPa)Rn
: Net radiation (W m-2)df
: DataFrame with above variablesconstants=
BigleafConstants
()
: Dictionary with physical constants
additional for InversePenmanMonteith
LE
: Latent heat flux (W m-2)VPD
: Vapor pressure deficit (kPa)Ga_h
: Aerodynamic conductance towater vapor (m s-1), assumed equal to that of heatG=0.0
: Ground heat flux (W m-2), defaults to zeroS=0.0
: Sum of all storage fluxes (W m-2), defaults to zeroEsat_formula=Sonntag1990()
: formula used inEsat_from_Tair
Details
For InversePenmanMonteith()
, surface conductance (Gs) in m s-1 is calculated from the inverted Penman-Monteith equation:
$G_s = ( LE \. G_a \, \gamma ) / ( \Delta \, A + \rho \, c_p \, G_a \, VPD - LE \, (\Delta + \gamma ))$
Where $\gamma$ is the psychrometric constant (kPa K-1), $\Delta$ is the slope of the saturation vapor pressure curve (kPa K^-1), and $\rho$ is air density (kg m-3). Available energy (A) is defined as $A = R_n - G - S$.
Ground heat flux and total storage flux can be provided as scalars or vectors of the length of the DataFrame in the DataFrame variant. While the bigleaf R package by default converts any missings in G
and S
to 0, in Bigleaf.jl
the caller must take care, e.g. by using G = coalesce(myGvector, 0.0)
.
For FluxGradient()
, Gs (in mol m-2 s-1) is calculated from VPD and ET only:
$Gs = ET/p \, VPD$
where ET is in mol m-2 s-1 and p is pressure. Note that this formulation assumes fully coupled conditions (i.e. Ga = inf). This formulation is equivalent to the inverted form of Eq.6 in McNaughton & Black 1973:
$Gs = LE \, \gamma / (\rho \, c_p \, VPD)$
which gives Gs in m s-1. Note that Gs > Gc (canopy conductance) under conditions when a significant fraction of ET comes from interception or soil evaporation.
If pressure
is not available, it can be approximated by elevation using the function pressure_from_elevation
Value
NamedTuple with entries:
- Gs_ms: Surface conductance in m s-1
- Gs_mol: Surface conductance in mol m-2 s-1
References
- Monteith, J., 1965: Evaporation and environment. In Fogg, G. E. (Ed.), The state and movement of water in living organisms (pp.205-234). 19th Symp. Soc. Exp. Biol., Cambridge University Press, Cambridge
- McNaughton, KG., Black, TA., 1973: A study of evapotranspiration from a Douglas Fir forest using the energy balance approach. Water Resources Research 9, 1579-1590.
Examples
Tair,pressure,VPD,LE,Rn,Ga_h,G = (14.8, 97.7, 1.08, 183.0, 778.0, 0.116, 15.6)
Gs = surface_conductance(InversePenmanMonteith(), Tair,pressure,VPD,LE,Rn,Ga_h;G)
isapprox(Gs.Gs_mol, 0.28, atol=0.1)